[切换地区]

2014年高考数学(理)二轮复习体系通关训练2-4练习卷(带解析)

适用年级:{{getGradeNameByProperty('高三|专题试卷|全国|2014年')}} 试卷类型:{{getTestPaperTypeName('高三|专题试卷|全国|2014年')}} 使用省份:{{getAreaName('高三|专题试卷|全国|2014年')}}
试卷年份:{{getYear('高三|专题试卷|全国|2014年')}}上传日期:2014-03-11题数:6
浏览次数:585
提示:单击题文可显示答案与解析。
1学币
题号:950618 题型:解答题 难易度:较难 日期:2014-03-11 来源:2014年高考数学(理)二轮复习体系通关训练2-4练习卷(带解析)
【题文】在数列{an}中,a1=1,{an}的前n项和Sn满足2Snan+1.
(1)求数列{an}的通项公式;
(2)若存在n∈N*,使得λ,求实数λ的最大值.

【答案】

【解析】

登录学易云,内容更精彩! 抱歉,未登录用户无法看答案与解析!

立即登录 还不是学易云用户?

题号:950619 题型:解答题 难易度:一般 日期:2014-03-11 来源:2014年高考数学(理)二轮复习体系通关训练2-4练习卷(带解析)
【题文】已知{an}为等差数列,且a2=-1,a5=8.
(1)求数列{|an|}的前n项和;
(2)求数列{2n·an}的前n项和.

【答案】

【解析】

登录学易云,内容更精彩! 抱歉,未登录用户无法看答案与解析!

立即登录 还不是学易云用户?

题号:950620 题型:解答题 难易度:较难 日期:2014-03-11 来源:2014年高考数学(理)二轮复习体系通关训练2-4练习卷(带解析)
【题文】已知数列{an}的前n项和Sn满足Snan n-1=2(n∈N*),设cn=2nan.
(1)求证:数列{cn}是等差数列,并求数列{an}的通项公式.
(2)按以下规律构造数列{bn},具体方法如下:
b1c1b2c2c3b3c4c5c6c7,…,第nbn由相应的{cn}中2n-1项的和组成,求数列{bn}的通项bn

【答案】

【解析】

登录学易云,内容更精彩! 抱歉,未登录用户无法看答案与解析!

立即登录 还不是学易云用户?

题号:950621 题型:解答题 难易度:困难 日期:2014-03-11 来源:2014年高考数学(理)二轮复习体系通关训练2-4练习卷(带解析)
【题文】已知n∈N*,数列{dn}满足dn,数列{an}满足and1d2d3+…+d2n,又知在数列{bn}中,b1=2,且对任意正整数mn.
(1)求数列{an}和数列{bn}的通项公式;
(2)将数列{bn}中的第a1项,第a2项,第a3项,…,第an项,…删去后,剩余的项按从小到大的顺序排成新数列{cn},求数列{cn}的前2 013项和.

【答案】

【解析】

登录学易云,内容更精彩! 抱歉,未登录用户无法看答案与解析!

立即登录 还不是学易云用户?

题号:950622 题型:解答题 难易度:较难 日期:2014-03-11 来源:2014年高考数学(理)二轮复习体系通关训练2-4练习卷(带解析)
【题文】已知各项均不相等的等差数列{an}的前5项和为S5=35,且a1+1,a3+1,a7+1成等比数列.
(1)求数列{an}的通项公式;
(2)设Tn为数列的前n项和,问是否存在常数m,使Tnm,若存在,求m的值;若不存在,说明理由.

【答案】

【解析】

登录学易云,内容更精彩! 抱歉,未登录用户无法看答案与解析!

立即登录 还不是学易云用户?

题号:950623 题型:解答题 难易度:困难 日期:2014-03-11 来源:2014年高考数学(理)二轮复习体系通关训练2-4练习卷(带解析)
【题文】设等比数列{an}的前n项和为Sna4a1-9,a5a3a4成等差数列.
(1)求数列{an} 的通项公式;
(2)证明:对任意k∈N*Sk+2SkSk+1成等差数列.

【答案】

【解析】

登录学易云,内容更精彩! 抱歉,未登录用户无法看答案与解析!

立即登录 还不是学易云用户?